50=-16t^2+63t+4

Simple and best practice solution for 50=-16t^2+63t+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=-16t^2+63t+4 equation:



50=-16t^2+63t+4
We move all terms to the left:
50-(-16t^2+63t+4)=0
We get rid of parentheses
16t^2-63t-4+50=0
We add all the numbers together, and all the variables
16t^2-63t+46=0
a = 16; b = -63; c = +46;
Δ = b2-4ac
Δ = -632-4·16·46
Δ = 1025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1025}=\sqrt{25*41}=\sqrt{25}*\sqrt{41}=5\sqrt{41}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-5\sqrt{41}}{2*16}=\frac{63-5\sqrt{41}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+5\sqrt{41}}{2*16}=\frac{63+5\sqrt{41}}{32} $

See similar equations:

| (1-3x)/4=(x+6)/3+1/2 | | (2t−3)^5−243=0 | | X^2-12x-(-35)=0 | | 2x+7+3x=22 | | 3x=8+10+2 | | 4(x-9)+7=10x-7 | | 15+35+11y-12=180 | | 4x-9=6x-113 | | 2^b+2=8^2b | | 68-3x=90 | | 9x+2.3=-3x+1.7 | | 4(-5+p=12 | | .25(8a+40)=7a | | X=2(90-x)-24 | | -9x+2.3=-3x+17 | | 9x+2.3=-3x+17 | | 8/v-6=6/v-1 | | -32=4(x+1) | | 11y-12=90 | | 3/8=1/4x-3/5 | | 11y-12=150 | | 4/3(x+8)=3/4(2x+12) | | 2-9-10x+-7)=6 | | 38.10=6s+4.14 | | 11y-12=180 | | 6(5+m)=2(4-m) | | (8^2y)(16^3y-1)=256 | | 2+3+3x15=38 | | 1/3(6x+12)=5 | | 1/4x-11=-7 | | -2x+4(2)=-8 | | 7=17-1/5x |

Equations solver categories